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SEPARATION SCIENCE, 2(3), 31 9-334 (1 967) 

Effect of Concentration 
Gradients in Barrier Separation Cells 

MAX E. BREUER" and KARL KAMMERMEYER 
DEPARTMENT OF CHEMICAL ENGINEERING, UNIVERSITY OF IOWA 
IOWA CITY, IOWA 

Summary 

Concentration gradients in the gas phase above and below the barrier in 
separation cells were measured. The experimental data were compared 
with existing theories and none of the theories adequately correlated the 
data over the range of parameters studied. A new, geometry-dependent, 
theory was formulated. This theory, which allows for mixing by diffusion 
above and below the barrier, gave better predictions, both for product con- 
centrations and for permeated flow rate, than any of the existing theories, 
and also predicts concentration profiles. Although the theoretical model was 
developed in a study of separation of gases, it could be applied to other 
systems as well, if the proper permeability and diffusion coefficients were 
used. 

Mass transfer within separative barriers themselves has been 
studied extensively, both for porous and polymeric barriers. How- 
ever, the mass transfer in the gas phase immediately adjacent to the 
surfaces of the barrier has received only limited, if any, attention. 
The concentration in this gas phase determines the driving forces 
for the flow through the barrier. 

Several publications (1,2,4,6-8) have dealt with estimating the 
separation in the gas phase by making assumptions of perfect mix- 
ing, or of no mixing, on both sides of the barrier. In view of the low 
absolute permeabilities of presently available barriers and the 
resulting low flow rates, it is highly unlikely that perfect mixing will 
be achieved in any actual separation cell. Also, the assumptions 

* Present address: Chemicals Division, Union Carbide Corporation, South 
Charleston, West Virginia. 
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320 M. E. BREUER AND K. KAMMERMEYER 

made in the “no-mixing” case (11) of Weller and Steiner (7,8) would 
be difficult to achieve in practice. They assume that “the gas com- 
position on the low pressure side is given by the relative rates of 
permeation of the individual constituents at that point.” This as- 
sumption would be true only if the barrier were far enough away 
from the low-pressure flow stream that the gas composition of this 
stream did not affect the composition next to the barrier. 

Oishi et al. (5) presented a theoretical analysis of a gaseous dif- 
fusion cell on the basis of the Weller and Steiner equations. The 
conclusion was reached that counterflow operation should give the 
greatest separation. Parallel laminar flow, and flow with mixing on 
both sides of the barrier, should give less separation (in that order). 

Since it is unlikely that perfect mixing will occur in a separation 
cell, and since the assumptions made in previous no-mixing the- 
ories are somewhat unrealistic, it is necessary to consider a theory 
which recognizes the existence of a concentration gradient on the 
upstream side of the barrier, and which also allows for the flow 
stream on the downstream side of the barrier to be immediately 
adjacent to the barrier, In addition, any concentration gradient will 
have associated with it a difhsional flow, which can be thought of as 
a sort of mixing and which should be included in a theoretical 
model. The authors’ formulation, in an attempt to achieve these 
goals, is as follows. 

THEORY 

Concentration gradients above and below the barrier can exist 

1. Parallel to the bulk flow of nonpermeated gas. 
2. Perpendicular to the bulk flow and perpendicular to the 

barrier surface. 
3. Perpendicular to the bulk flow and parallel to the barrier 

surface. 
Effect 3 would be due to frictional effects at the cell wall and end 

effects at the feed and product ends of the cell. These effects will 
depend on the flow rate and the geometry of the cell. In view of the 
relatively low flow rates encountered in separation cells, effect 
3 can be neglected. 

Effect 2 will be due to depletion of the faster permeating compo- 
nent at the surface of the barrier. The existence of this “exhaustion 
layer” will depend upon the relative magnitudes of the gaseous- 

in three directions: 
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GRADIENT EFFECTS IN SEPARATION CELLS 32 1 

phase diffusion coefficient, and the permeability coefficient for the 
system being studied. Binary gas diffusion coefficients are of the 
order of 1 cm2/sec-cm Hg, and permeability coefficients are of the 
order of 10+ to Thus the resistance to flow caused by the bar- 
rier is many orders of magnitude larger than that caused by gaseous 
diffusion. Therefore effect 2 can be neglected. McAfee (3)  states 
that an exhaustion layer will not form until the dimension between 
the barrier and the top of the cell is of the order of D A B / K p ;  then this 
dimension of the cell would be approximately lo6 to loy cm, a 
rather large cell, to say the least. 

Thus the only concentration gradient to be considered is the one 
parallel to the bulk flow-effect 1. This concentration gradient is 
caused by the separative action of the barrier; the faster permeating 
component will be gradually depleted in the nonpermeated stream. 
The diffusional flow associated with this gradient will be accounted 
for. 

A diagram of a schematic separation cell for the following deri- 
vation is shown in Fig. 1. A material balance can be written for 
component B around an incremental element from (1)  to (1  + h). 
Q B ( ~  + OB(l) + 9 B ( l )  + d B ( l )  

= Q B ( 1  + h) + DB(1 + h) + 9B(l! + h) + dB(f! + h) (1) 
[All flows are in cmS(STP)/sec] 

( 1 )  ( I t h )  

FIG. 1. Schematic separation cell. 
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322 M. E. BREUER AND K. KAMMERMEYER 

After dividing Eq. (1) by h, rearranging, and taking the limit as 

(2) 
h + 0, we obtain 

where 
Q; + D; + q; + d; = 0 

Similarly, for component A, 

Q i  + D; + 9; + & = 0 (4) 

A material balance written around the incremental element on the 
low-pressure side can be used to relate the change in 9, d, and the 
flow permeating the barrier: 

W 9~dl-t h) + ddl + h) - ~ B ( O  - dB(O = KPB t ~ ( P H X B  - PLYB) (5 )  

Dividing both sides of Eq. (5) by h, rearranging, and taking the limit 
as h -+ 0, we obtain 

- + d; = KBDPB 
where 

and 

- 
DPB = (PHXB - PLYB) 

Similarly, for component A, 
- 

qi  + dk = KADPA 
For the diffusional flow, 

(9) 

DB = -&,Xi (11) 

X A =  1-XB (12) 

XLQ + XBQ' - + KBDPB = 0 (13) 

For a binary system, 

Combining Eqs. (2), (6), and ( l l ) ,  
- 
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GRADIENT EFFECTS IN SEPARATION CELLS 323 

Similarly, from Eqs. (4), (9), (lo), and (12), 
- 

-XgQ + (1 - XB) Q' + KDHX&' + KADPA = 0 (14) 

Subtracting Eq. (13) from (14) and solving for Xg we have 

Xb = (1/2Q) [ K A m -  K B m  + (I - ~ X B )  Q'] KDHX&'/Q (15) 

Adding Eqs. (13) and (14), 

Q ' = - K , m -  K B m  (16) 

There are now two equations, (15) and (16), with three unknowns, 
XB, YB, and QB. A third equation can be obtained by an over-all 
material balance from 1 = 0 to I = 1:  

Qf;= QB + D B  + q B  + dB (17) 

DB =-DA (18) 

For the diffusion terms at any point, 

d, = - d A  

Therefore 

Q f = Q + q  (20) 
From Eqs. (17) and (20) we can obtain an expression for YB in terms 
of XB and Q: 

A straightforward analytical solution of Eqs. (15), (16), and (21) 
would be exceedingly difficult at best, and the authors have not 
been able to find one. However, the equations have been solved 
by numerical techniques. 

If we ignore, for the time being, the terms involving the diffusion 
constants, Eqs. (15), (16);and (21) can be solved by a simple "crude 
Euler" stepping technique. 

XB(0) = xi (22) 
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324 M. E. BREUER AND K. KAMMERMEYER 

TABLE 1 

Iteration Procedure for Plug Flow 

Given: (a) X i ,  feed concentration 
(b) Qf, feed flow rate 
(c) K P A ,  KpB, permeability coefficients of gases in mixture 
(d) Width, length, and thickness of barrier 
( e )  h, incremental barrier length 

(1) Solve for Q’ from Eq. (16) 
(2) Solve for Xk from Eq. (15) omitting diffusion term (last term in 

Steps in computer use: 

equation) 
(3) X B ( 1  + h) = X B ( 1 )  + XA(l)h 
(4) a1 + h)  = Q(1) + Q’(l)h 
(5) Solve for Y B ( l +  h) from Eq. (21) omitting diffusion term (last term) 
(6) Iterate steps (1) through (5) for the desired cell length 

For YB(0) we will use a perfect mixing approximation taking YB in 
equilibrium with Xi. The iteration procedure given in Table 1 is 
then used. 

The solution obtained describes a simple plug flow, i.e., a uni- 
directional flow system. It differs from the no-mixing solution of 
Weller and Steiner (7,8) and Naylor and Backer (4) in that YB is a 
function of both Q and XB, not of XB alone. 

The inclusion of the diffusional terms in Eqs. (15), (16), and (21) 
not only complicates the solution, but also introduces additional 
boundary conditions. The only diffusion which can occur at the 
cell walls, i.e., at 2 = 0 and I = L, is diffusion into and out of the feed 
supply and product takeoff tubes. Since the cross-sectional area of 
these tubes is small compared to the cross-sectional area of the cell, 
this diffusion can be neglected. The assumption of zero diffusion at 
the wall requires the following boundary conditions: 

Xb(0) = Xb(L) = Yb(0) = Yb(L) = 0 (24) 

The value of Q(0) is known (93, but the value of XB(0) is not neces- 
sarily Xg. There will be a diffusional flow of component B toward 
the wall at 1 = 0, and since this flow stops at the wall, it will “build 
up” there, and increase the value of XB(0). 
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GRADIENT EFFECTS IN SEPARATION CELLS 325 

The equations with the diffusional terms cannot be solved in the 

1. An initial value for XB(0) is not available. 
2. Equation (15) predicts that XY, is directly related to X i .  If Xg 

becomes positive, this correction will increase X g ,  thus increasing 
X i ,  and thus XB increases very rapidly. The solution soon gets out of 
hand when using a numerical stepping procedure. 

3. In Eq. (21) the value of the denominator (Qf - Q) is initially 
very small, and thus the value obtained for YB is extremely sensi- 
tive to even the slightest variation in Xg or YY,. 

An approximate solution to Eqs. (15), (16), and (21) was developed 
as follows. The solution to the plug flow case is used as aflrst ap- 
proximation. The values of XY, and YY, from this case are used to 
estimate the amount of diffusional flow occurring. 

same manner as the plug flow equations, for several reasons: 

For diffusion on the low-pressure side we can write 

d B  = -KDLY;) 
Inserting this in Eq. (5 )  we have 

Solving for YB and putting the equation in finite-difference form, 
we have 

1 YB(i) =- {YB(i- l ) q ( i  - 1) + PBF 
q(2) 

+ KDL[YY,(i) - Yk(i - l)]} (28) 

A similar equation for XB is 

- 1  
X B ( ~ )  =- { X B ( ~ -  1 )Q( i -  1) 

Q ( a >  
+ KDH[XS(i) - X S ( i -  1)I -PBF} (29) 

Equations (28) and (29) can be used to calculate XB and Y B  by a 
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326 M. E. BREUER AND K. KAMMERMEYER 

stepping procedure using values for XA, YAY and Q from the previous 
approximation. Since the effect of diffusion flow is to reduce the 
magnitude of XA and YAY the values for XA and Y i  from the plug flow 
case will probably be too large. This problem will be avoided by 
using a diffusion constant arbitrarily chosen to be a given fraction, 
say 0.2, of the actual constant. This fraction will then be gradually 
increased in successive approximations until the full value of the 
diffusion constant is reached. 

Equations (28) and (29) will give sharp discontinuities and X i  
values less than zero when used at the boundaries. This is because 
XA(0) and Xb(L) are definitely not zero in the plug flow case. This 
problem will be circumvented as follows. At  the feed end of the 
cell xB(1) will be calculated using Eq. (29) with XA(0)  = 0. This 
will give an XR( 1) value somewhat larger than the X,( 1) value in the 
plug flow case. Since Xi(O)=O, it would be reasonable to set 
X,(O) =XB(l) .  Therefore X,(O) will be larger than Xi. See Fig. 2, 
where A indicates the newly calculated XB(0) value. If we then 
calculate successive points using Eq. (29), Xi will be negative 
between points i = 1 and i = 2. To avoid this, we search for an XR 

xE I 

0 I +  

FIG. 2. Graphic aid, diffusion-mixing solution. 

- 3c 
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GRADIENT EFFECTS I N  SEPARATION CELLS 327 

which is greater than XB(0). After finding XB at point B, Fig. 2 
linearize Xg from this point back to zero: 

XA = AZ 

we 

30) 

XB=AZ2+C (31) 
where C is the intercept. This procedure will give the dashed curve 
shown in Fig. 2 (left side). 

At the product-takeoff end of the cell, a similar procedure will be 
followed. Using Eq. (29) we solve for XB(i) with Xfi(i) = 0. This will 
give an XB(i) value less than XB(i - 1) (see Fig. 2, point lc). If we in- 
crease the size of the increment h, the difference, XB(i) - XB(i - l ) ,  
will become smaller. (Fig. 2, point 2c), and if we increase h enough, 
X,(i) will be larger than XB(i - l), making Xg positive (Fig. 2, 
point 3c). Again we linearize XA from point 3 to L, giving the dashed 
curve in Fig. 2 (right side). 

This procedure still leaves a discontinuity in the XB curve at 
points B and 3, Fig. 2. These can be removed by observing that the 
resultant curve closely approximates the portion of a cubic equation 
between the zero derivative points. A cubic equation satisfying the 
boundary conditions is 

Z3 + CZ2 + D (32)  
-2c 

X B = x  

where C and D are constants to be determined. A least-squares 
technique can be used to determine these constants. 

In practice the procedure of first rounding the ends of the curve 
can be omitted, and the plug flow curve fitted directly to Eq. (32). 
This simplifies the calculations somewhat and gives the same 
results. However, the theoretical basis for the fit of the cubic equa- 
tion curve still lies in the initial rounding of the end portions of the 
XB cui-ve. 

The same technique can be used on the YB curve, and again the 
least-squares cubic equation fit can be used directly without going 
through the intermediate steps. 

The iteration procedure given in Table 2 is then used for an 
approximate solution to Eqs. (15), (16), and (21). 

The curve-fitted XB(L) and YB(L) values from the last iteration 
in Table 2 will not satisfy a total material balance exactly, owing 
to slight errors in the curve fit. This can be corrected as follows. 
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328 M. E. BREUER AND K. KAMMERMEYER 

TABLE 2 

Iteration Procedure for Diffusional Mixing 

Gioen: (a) Solution to plug flow equation (Table 1) 
(b) Diffusion constants KDH and KDL 
(c) Allowable error for stopping interation 

(1) Use plug flow solution as first approximation 
(2) Fit the resulting X e  vs. 1 values to the curve: 

Steps in computer use: 

Fit a similar curve for the YB values: 
(3) With an arbitrary fractional diffusion constant, cal- 

culate X e  and Ye from Eqs. (28) and (29) using X b ,  
Yb, and Q values from the curve fit of step (2) 

(4) Increase the diffusion constant gradually, and 
repeat steps (2) and (3) 

(5 )  After the diffusion constant has been increased to 
its actual value, iterate steps (2) and (3) until the 
change in X&) and Ye&) between iterations is 
less than an allowable error 

Define a theoretical Xf (denoted TXf): 

(33) TXf= XO(L) (1 - F )  - Y P  (L)F  
- 

Also, define a curve-fit error (CFE): 
- 
CFE = X' - TXf (34) 

Then set 

x O ( L )  = xO(L)  (curve fit) + CFE 

Y P ( L )  = YP(L) (curve fit) + CFE 

(35) 

(36) 
The resulting values of Xo(L) and Y'(L) satisfy a material balance 
exactly. The magnitude of CFE in actual computation averaged 
approximately 0.001 mole fraction. 

For most cases, this iteration procedure converges rapidly, usu- 
ally requiring no more than four or five iterations with the actual 
diffusion constant. For those cases where the plug flow XB vs. 1 
curve is significantly concave downward, the solution diverges. 
Results of theoretical calculations show that the difference between 
the predicted outlet concentrations for plug flow and for diffusion- 
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GRADIENT EFFECTS IN SEPARATION CELLS 329 

mixing approaches zero as X i  approaches zero. In addition, if the 
diffusion-mixing solution diverges, the plug flow solution gives as 
good an agreement with experimental results as was obtained for 
cases where the diffusion-mixing solution converged. This might 
have been anticipated, since XB vs. 1 curves which are significantly 
concave downward have a very small slope for a substantial portion 
of the cell length at the outlet end. 

APPARATUS AND PROCEDURE 

Rectangular barriers of microporous Vycor glass ( 7 8  x 2# x 
0.053 in.) and Stauffer SS-823-RTV silicone rubber (70 X 4 X 0.031 
in.) were used. Metal cells were constructed to support the barriers 
and to allow for sampling of the gas stream directly above and 
below the barriers at regular intervals. Sampling was done with a 
gas-tight syringe and samples were analyzed with a gas chromato- 
graph. Six samples of each of the feed stream, the nonpermeated 
stream, and the permeated stream were taken and averaged. One 
sample was taken from each sample port above and below the 
barrier. When sampling the gas stream above and below the barrier, 
the needle of the sampling syringe was placed as close to the 
barrier surface as possible without damaging the needle or the bar- 
rier. However, even with a small sample size (0.5 ml), only an av- 
erage of the concentration in the gas space above the barrier could 
be obtained. Samples were not taken below the barrier for runs 
where the downstream pressure was subatmospheric, as the gas 
syringe sampling procedure was not readily adaptable to sub- 
atmospheric sampling. The flow rates of the permeated and non- 
permeated streams were measured using a soap-bubble flow meter. 

RESULTS 

A total of 113 experimental separation runs were made. All runs 
where the material-balance deviation was greater than 3% were 
rejected. This procedure rejected four runs. The Vycor barrier was 
used with He-N, and He-CO, gas mixtures and the silicone rubber 
barrier with a N,-CO, mixture. The pressure ratio PLIPH was varied 
from 0.02 to 0.50, the cut or fraction permeated from 0.05 to 0.95, 
and the feed composition from 0.25 to 0.75 mole fraction of B 
component. 
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0.60 
XB 

- 

od -7 F = 0.79 
YB Or k. 

O.SO~~"X!.: 0.524 n 

-Plug flow 
--Diffusion mixing 

I 
0 4 8 12 16 20 

Length along barrier ( c m )  

FIG. 3. Sample concentration profile, He-N,, Vycor barrier. 

Three sample profiles are given in Figs. 3, 4, and 5. The lines 
drawn through the points are those predicted by the plug flow 
model (solid lines) and the diffusion-mixing model (dashed lines). 
A diffusion-mixing prediction is not given in Fig. 5, as the solution 
diverged in this case. It can be seen however, that the plug flow 
model adequately predicts the outlet concentrations in this case. 

For judging the adequacy of the theoretical - models, an average 
absolute error in concentration prediction (AAE-C), was defined as 
follows : 

0.80- 

0.70 - 
XB 
or 

-Plug flow 
--Diffusion mining 

0.40 1 1 I I I 
0 4 8 12 16 20 

Length along barrier (cm) 

FIG. 4. Sample concentration profile, He-N,, Vycor barrier. 
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0.80 O'gOl 0 0 0 0 0  

0.50Y 
pLpH = 0.24 

F = 0.69 

040 t 
0.30 - 

0.20-00 0 0 0 

0.ool 1 

0 10 20 30 40 50 60 70 
Length along barrier (in.) 

FIG. 5. Sample concentration profile, N,-CO,, silicone rubber. 

(37) 
[Xg(predicted) - (Xg(expt.)] x 100 

Xg(expt.) Xg( % error) = 

[Yg(predicted) - Yg(expt.)] x 100 
YE( % error) = Ylg)( expt.) (38) 

m - C  = 0.5[IX,O( % error) I + [YE (% error) I ]  (39) 
- 

where: AAE-C = average absolute error in concentration pre- 

Similarly, an error for permeated flow predictions,EqP, was defined: 
diction. 

(40) 

The values of m - C  and EqP averaged for all the runs are given 
in Table 3. Also listed in Table 3 is the percentage of runs for which 
a given model predicted an Xg higher than the experimental X,", and 
a similar value for 9'. Ideally, this value should be 50%, because if 
a model were perfect, one would expect the experimental points to 
be high one-half the time. The percentage values in Table 3 show 

I [ qp  (predicted) - qp (expt.) ] I X 100 Eq' = 
q'kxpt. 1 
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TABLE 3 

Correlation of Theoretical Models and Experimental Data 

Model Average m - C  Average High predictions, % 

Concentration predictions 
ws I 
ws I1 
N-B 
Plug flow 
Diffusion mixing 

ws I 

Diffusion mixing 

Permeated flow predictions 

Plug flow 

3.36 
4.31 
4.55 
3.43 
2.39 

2.83 
2.38 
2.27 

16 
84 
88 
81 
67 

27 
50 
40 

the Naylor-Backer, Weller-Steiner case 11, and plug flow predic- 
tions to be consistently high, whereas the Weller-Steiner case I 
values are usually low. Only the diffusion-mixing model approaches 
the ideal 50% value. 

The difference in the predicted quantity of permeated flow of the 
different models is not nearly as pronounced as in the concentra- 
tion predictions, and it is difficult to say whether there is a signifi- 
cant difference in the three models tested. However, the diffusion- 
mixing and plug flow models do approach more closely the ideal 
50% high predictions than the Weller-Steiner case I model. 

CONCLUSIONS 

Concentration gradients in gas mixture barrier separation cells 
were measured, using both microporous and polymeric barriers. 
The interpretation of these gradients was performed while consider- 
ing the available theoretical models. 

Existing theories in the literature were deemed inadequate for 
the following reasons: 

1. The theories which assume perfect mixing predict a uniform 
concentration, i.e., no gradient, on both high- and low-pressure 
sides of the cell. The existence of a gradient indicates that the per- 
fect mixing assumption is invalid. 

2. The theories which supposedly assume no mixing actually 
assume that the barrier is far enough away from the low-pressure 
flow stream that the gas composition of this stream does not affect 
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the composition next to the barrier. Since this will not normally 
be the case, this assumption is also invalid. 

A two-part theoretical model was developed in this study. In the 
first part, plug flow, i.e., unidirectional flow, is assumed. This is 
essentially a no-mixing theory which allows for both high- and low- 
pressure flow streams to be adjacent to the barrier. In the second 
part, diffusional flow caused by the concentration gradient is  taken 
into account. A straightforward numerical solution to the plug flow 
model has been developed. An approximate solution for the model 
involving diffusional flow has been proposed. The plug flow equa- 
tions are solved and then a correction factor involving diffusion is 
added to the plug flow solution. This iterative approximate solution 
converges in most cases. 

The proposed model represents the experimental data in this 
study more adequately than any of the previous models. Given the 
feed concentration, feed flow rate, barrier and cell geometry, and 
permeability and diffusion coefficients, this model will give pre- 
dictions for the concentration gradient on both the high- and low- 
pressure sides of the cell. It also yields predictions of both per- 
meated and nonpermeated outlet concentrations, and the permeated 
flow rate. Where the iterative solution to the diffusion mixing model 
does not converge, the model does not adequately predict the con- 
centration profile, but it still gives adequate predictions for outlet 
conditions. 

Nomenclature 

AAE-C - 
CFE 

d 
D 
D 

DPA 
DPB 

F 
h 
K 

1 
L 
P 

- 
- 
- 
EqP 

average absolute error in concentration prediction, % 
curve-fit error 
diffusion flow, low-pressure side of barrier 
diffusion flow, high-pressure side of barrier 
diffusion coefficient 
partial pressure difference, A component 
partial pressure difference, B component 
error in permeate flow prediction, % 
fraction of feed permeating barrier 
length of incremental element 
constant 
length 
total length of cell 
pressure 
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- 
PBF 

d 
t 

TXf 

X 
Y 

X ’  
X ”  

W 

permeated flow of component B in incremental element 
flow rate, low-pressure side of barrier 
flow rate, high-pressure side of barrier 
thickness 
“theoretical” X f  
width 
mole fraction, high-pressure side of barrier 
mole fraction, low-pressure side of barrier 
dXldl 
d2xldl2 

Subscripts: 
A component A of mixture 
B component B of mixture 
D diffusion 
H high-pressure side 
L low-pressure side 
P permeability 

f feed stream 
0 high-pressure outlet 
P low-pressure outlet 

Superscripts: 
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