This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

St Bt STEVEN 3. CRANGE Separation Science and Technology

Publication details, including i ions for authors and subscription information:
SEPARMTION SCIENCE. | oo nformaworld.comsmppreiti-contentc 5708671+
A TECHAOLOGY Effect of Concentration Gradients in Barrier Separation Cells
S— .. | Max E. Breuer®; Karl Kammermeyer*

@ Department of Chemical Engineering, University of Iowa, Iowa City, lowa ® Chemicals Division,
Union Carbide Corporation, South Charleston, West Virginia

To cite this Article Breuer, Max E. and Kammermeyer, Karl(1967) 'Effect of Concentration Gradients in Barrier Separation
Cells', Separation Science and Technology, 2: 3, 319 — 334

To link to this Article: DOI: 10.1080/01496396708049705
URL: http://dx.doi.org/10.1080/01496396708049705

PLEASE SCROLL DOWN FOR ARTICLE

Full terns and conditions of use: http://wwinformworld.coniterns-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or danmmges whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713708471
http://dx.doi.org/10.1080/01496396708049705
http://www.informaworld.com/terms-and-conditions-of-access.pdf

14: 47 25 January 2011

Downl oaded At:

SEPARATION SCIENCE, 2(3), 319-334 (1967)

Effect of Concentration
Gradients in Barrier Separation Cells

MAX E. BREUER* and KARL KAMMERMEYER

DEPARTMENT OF CHEMICAL ENGINEERING, UNIVERSITY OF IOWA
IOWA CITY, IOWA

Summary

Concentration gradients in the gas phase above and below the barrier in
separation cells were measured. The experimental data were compared
with existing theories and none of the theories adequately correlated the
data over the range of parameters studied. A new, geometry-dependent,
theory was formulated. This theory, which allows for mixing by diffusion
above and below the barrier, gave better predictions, both for product con-
centrations and for permeated flow rate, than any of the existing theories,
and also predicts concentration profiles. Although the theoretical model was
developed in a study of separation of gases, it could be applied to other
systems as well, if the proper permeability and diffusion coefficients were
used.

Mass transfer within separative barriers themselves has been
studied extensively, both for porous and polymeric barriers. How-
ever, the mass transfer in the gas phase immediately adjacent to the
surfaces of the barrier has received only limited, if any, attention.
The concentration in this gas phase determines the driving forces
for the flow through the barrier.

Several publications (1,2,4,6-8) have dealt with estimating the
separation in the gas phase by making assumptions of perfect mix-
ing, or of no mixing, on both sides of the barrier. In view of the low
absolute permeabilities of presently available barriers and the
resulting low flow rates, it is highly unlikely that perfect mixing will
be achieved in any actual separation cell. Also, the assumptions

* Present address: Chemicals Division, Union Carbide Corporation, South
Charleston, West Virginia.
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made in the “no-mixing” case (II) of Weller and Steiner (7,8) would
be difficult to achieve in practice. They assume that “the gas com-
position on the low pressure side is given by the relative rates of
permeation of the individual constituents at that point.” This as-
sumption would be true only if the barrier were far enough away
from the low-pressure flow stream that the gas composition of this
stream did not affect the composition next to the barrier.

Oishi et al. (5) presented a theoretical analysis of a gaseous dif-
fusion cell on the basis of the Weller and Steiner equations. The
conclusion was reached that counterflow operation should give the
greatest separation. Parallel laminar flow, and flow with mixing on
both sides of the barrier, should give less separation (in that order).

Since it is unlikely that perfect mixing will occur in a separation
cell, and since the assumptions made in previous no-mixing the-
ories are somewhat unrealistic, it is necessary to consider a theory
which recognizes the existence of a concentration gradient on the
upstream side of the barrier, and which also allows for the flow
stream on the downstream side of the barrier to be immediately
adjacent to the barrier. In addition, any concentration gradient will
have associated with it a diffusional flow, which can be thought of as
a sort of mixing and which should be included in a theoretical
model. The authors’ formulation, in an attempt to achieve these
goals, is as follows.

THEORY

Concentration gradients above and below the barrier can exist
in three directions:

1. Parallel to the bulk flow of nonpermeated gas.

2. Perpendicular to the bulk flow and perpendicular to the
barrier surface.

3. Perpendicular to the bulk flow and parallel to the barrier
surface.

Effect 3 would be due to frictional effects at the cell wall and end
effects at the feed and product ends of the cell. These effects will
depend on the flow rate and the geometry of the cell. In view of the
relatively low flow rates encountered in separation cells, effect
3 can be neglected.

Effect 2 will be due to depletion of the faster permeating compo-
nent at the surface of the barrier. The existence of this “exhaustion
layer” will depend upon the relative magnitudes of the gaseous-
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phase diffusion coefficient, and the permeability coeflicient for the
system being studied. Binary gas diffusion coefficients are of the
order of 1 cm?/sec-cm Hg, and permeability coeflicients are of the
order of 1078 to 107®. Thus the resistance to flow caused by the bar-
rier is many orders of magnitude larger than that caused by gaseous
diffusion. Therefore effect 2 can be neglected. McAfee (3) states
that an exhaustion layer will not form until the dimension between
the barrier and the top of the cell is of the order of Dp/Kp; then this
dimension of the cell would be approximately 10¢ to 10° cm, a
rather large cell, to say the least.

Thus the only concentration gradient to be considered is the one
parallel to the bulk flow—effect 1. This concentration gradient is
caused by the separative action of the barrier; the faster permeating
component will be gradually depleted in the nonpermeated stream.
The diffusional flow associated with this gradient will be accounted
for.

A diagram of a schematic separation cell for the following deri-
vation is shown in Fig. 1. A material balance can be written for
component B around an incremental element from (I) to (I + h).

Qs(l) + Dg(l) + gs(l) + ds(l)
=Qgp(l+ h)+Dg(l+ h)+ gal+h)+dg(l+ h) (1)
[All flows are in cm®(STP)/sec]

1 ¥
| )

% 0) Qi 195014 h} QL)

| )
Qgln {Qgli+h)

Qg(0} } | QB(L)
Dp (1) Dy (1+h) —
A ) 194

M | .
Dgl) Dg(t+h)
B ) 1°B
[}
| 1
qA(l) T 'qA(|+h)
[I &
gt | lag(1+h)
— — a, (L)
dall) | ldatih) ——
—
i
dg(n) | 1 dgli+h) gL}
— — —»
I t
L 1
() (i+h)

FIG. 1. Schematic separation cell.
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After dividing Eq. (1) by h, rearranging, and taking the limit as
h — 0, we obtain

Os+Ds+gat+ds=0 (2)
where
d
0y = %e )

Similarly, for component A,
Qi+ Di+gatdi=0 (4)

A material balance written around the incremental element on the
low-pressure side can be used to relate the change in g, d, and the
flow permeating the barrier:

ge(l+ h) + ds(l + h) = gu(l) — ds(l) = Kpp _LtQ h(PyXs — P.Ys) (5)

Dividing both sides of Eq. (5) by h, rearranging, and taking the limit
as h — 0, we obtain

gs + dy = KgDPB (6)
where
DPB = (PyXy — P_Yy) (7)
and
Ky = Kpp % (8)

Similarly, for component A,
ga+d, =K,DPA 9)
For the diffusional flow,

DA = —KDHX,,; (10)
D= —KpuXp (11)

For a binary system,
XA =]1- XB (12)

Combining Eqs. (2), (6), and (11),
XQ + XgQ' — KpuXi + KgDPB =0 (13)
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Similarly, from Eqs. (4), (9), (10), and (12),
—XgQ + (1 —Xg)Q’ + K, X§ + K,DPA=0 (14)

Subtracting Eq. (13) from (14) and solving for X we have
Xi= (1/2Q) [K\DPA — KgDPB + (1 — 2Xp) Q'] + KpuX§'/Q  (15)
Adding Egs. (13) and (14),

Q' =—K,DPA — K;DPB (16)

There are now two equations, (15) and (16), with three unknowns,
Xp, Yg, and Qs. A third equation can be obtained by an over-all
material balance from [=0to [=1:

Qf=Qs+Dp+ gz +ds (17)
For the diffusion terms at any point,
Dy =—D, (18)
dg=—d,\ (19)
Therefore
Q'=0+gq (20)

From Egs. (17) and (20) we can obtain an expression for Yj in terms

of Xz and Q:

Yg= (XEQ — XgQ)/(QF — Q) + (KpuXp + Kp Ys) /(O — Q)  (21)

A straightforward analytical solution of Eqs. (15), (16), and (21)
would be exceedingly difficult at best, and the authors have not
been able to find one. However, the equations have been solved
by numerical techniques.

If we ignore, for the time being, the terms involving the diffusion
constants, Egs. (15), (16),-and (21) can be solved by a simple “crude
Euler” stepping technique.

X;(0) = X§ (22)

Q(0) =0Qf (23)
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TABLE 1

Iteration Procedure for Plug Flow

Given: (a) X§, feed concentration
(b) @, feed flow rate
(c) Kpa, Kpg, permeability coefficients of gases in mixture
{d) Width, length, and thickness of barrier
(e) h, incremental barrier length

Steps in computer use:
(1) Solve for Q' from Eq. (16)
(2) Solve for Xj from Eq. (15) omitting diffusion term (last term in
equation)
(3) Xp(l+ h) = Xp(D) + Xa(Dh
4 ol+hm =00+ Q(Dh
(5} Solve for Yy(l + k) from Eq. (21) omitting diffusion term (last term)
(6) lterate steps (1) through (5) for the desired cell length

For Y5(0) we will use a perfect mixing approximation taking Yg in
equilibrium with X{. The iteration procedure given in Table 1 is
then used.

The solution obtained describes a simple plug flow, i.e., a uni-
directional flow system. It differs from the no-mixing solution of
Weller and Steiner (7,8) and Naylor and Backer (4) in that Yg is a
function of both Q and X3, not of X; alone.

The inclusion of the diffusional terms in Egs. (15), (16), and (21)
not only complicates the solution, but also introduces additional
boundary conditions. The only diffusion which can occur at the
cell walls, i.e., at I =0 and | = L, is diffusion into and out of the feed
supply and product takeoff tubes. Since the cross-sectional area of
these tubes is small compared to the cross-sectional area of the cell,
this diffusion can be neglected. The assumption of zero diffusion at
the wall requires the following boundary conditions:

X5(0) = X(L) = Y5(0) = Ya(L) =0 (24)

The value of Q(0) is known (Q), but the value of X3(0) is not neces-
sarily X§. There will be a diffusional flow of component B toward
the wall at [ = 0, and since this flow stops at the wall, it will “build
up” there, and increase the value of Xg(0).
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The equations with the diffusional terms cannot be solved in the
same manner as the plug flow equations, for several reasons:

1. An initial value for X5(0) is not available.

2. Equation (15) predicts that X is directly related to Xg'. If X§'
becomes positive, this correction will increase Xz, thus increasing
Xg, and thus Xj increases very rapidly. The solution soon gets out of
hand when using a numerical stepping procedure.

3. In Eq. (21) the value of the denominator (Q7 — Q) is initially
very small, and thus the value obtained for Yy is extremely sensi-
tive to even the slightest variation in Xg or Y.

An approximate solution to Eqgs. (15), (16), and (21) was developed
as follows. The solution to the plug flow case is used as a first ap-
proximation. The values of X3 and Yy from this case are used to
estimate the amount of diffusional flow occurring.

For diffusion on the low-pressure side we can write

dB = _KDLYIB (25)
Inserting this in Eq. (5) we have
Ye(l+ h)q(l+ h) — Yg(l)q(l) + Kp, Yg(l)
—Kp Ys(l+ h) =PBF (26)

where

PBF = KPB Qt h(PHXB - PLYB) (27)

= permeated flow of component B in
the incremental element h

Solving for Yg and putting the equation in finite-difference form,
we have

Ya(i) = —~ {Ya(i— 1)q(i — 1) + PBF

q(i)
+ Kp[Ye(i) —Yp(i—1)]} (28)
A similar equation for X is
Xa(i) = 565 Kali = DOG— D)

+ KpylX5(i) — Xg(i — 1)1 — PBF} (29)
Equations (28) and (29) can be used to calculate Xz and Yg by a
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stepping procedure using values for Xz, Yg, and Q from the previous
approximation. Since the effect of diffusion flow is to reduce the
magnitude of Xg and Y, the values for Xz and Y3 from the plug flow
case will probably be too large. This problem will be avoided by
using a diffusion constant arbitrarily chosen to be a given fraction,
say 0.2, of the actual constant. This fraction will then be gradually
increased in successive approximations until the full value of the
diffusion constant is reached.

Equations (28) and (29) will give sharp discontinuities and X}
values less than zero when used at the boundaries. This is because
X3(0) and Xj(L) are definitely not zero in the plug flow case. This
problem will be circumvented as follows. At the feed end of the
cell Xg(1) will be calculated using Eq. (29) with Xj(0) = 0. This
will give an Xg(1) value somewhat larger than the Xg(1) value in the
plug flow case. Since X(0)=0, it would be reasonable to set
Xp(0) = Xg(1). Therefore Xg(0) will be larger than X§. See Fig. 2,
where A indicates the newly calculated Xp(0) value. If we then
calculate successive points using Eq. (29), X3 will be negative
between points i =1 and i = 2. To avoid this, we search for an X;

X
B

- I
Predicted plug fiow curve———y

o 1—» L
FIG. 2. Graphic aid, diffusion-mixing solution.
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which is greater than Xg(0). After finding Xp at point B, Fig. 2, we
linearize Xp from this point back to zero:

Xy = Al (30)

Xg=AEF+C (31)

where C is the intercept. This procedure will give the dashed curve
shown in Fig. 2 (left side).

At the product-takeoff end of the cell, a similar procedure will be
followed. Using Eq. (29) we solve for Xp(i) with Xg(i) = 0. This will
give an Xz(i) value less than Xg(i — 1) (see Fig. 2, point lc). If we in-
crease the size of the increment h, the difference, Xg(i) — Xg(i — 1),
will become smaller. (Fig. 2, point 2¢), and if we increase h enough,
Xg(i) will be larger than Xy(i — 1), making X3 positive (Fig. 2,
point 3¢). Again we linearize Xj from point 3 to L, giving the dashed
curve in Fig. 2 (right side).

This procedure still leaves a discontinuity in the Xg curve at
points B and 3, Fig. 2. These can be removed by observing that the
resultant curve closely approximates the portion of a cubic equation
between the zero derivative points. A cubic equation satisfying the
boundary conditions is

Xp=

2C

3T B+Ck+D (32)
where C and D are constants to be determined. A least-squares
technique can be used to determine these constants.

In practice the procedure of first rounding the ends of the curve
can be omitted, and the plug flow curve fitted directly to Eq. (32).
This simplifies the calculations somewhat and gives the same
results. However, the theoretical basis for the fit of the cubic equa-
tion curve still lies in the initial rounding of the end portions of the
Xg curve.

The same technique can be used on the Yy curve, and again the
least-squares cubic equation fit can be used directly without going
through the intermediate steps.

The iteration procedure given in Table 2 is then used for an
approximate solution to Egs. (15), (16), and (21).

The curve-fitted Xg(L) and Yg(L) values from the last iteration
in Table 2 will not satisfy a total material balance exactly, owing
to slight errors in the curve fit. This can be corrected as follows.
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TABLE 2
Iteration Procedure for Diffusional Mixing

Given: (a) Solution to plug flow equation (Table 1)
(b) Diffusion constants Kpy and Ky,
(c) Allowable error for stopping interation
Steps in computer use:

(1) Use plug flow solution as first approximation
(2) Fit the resulting Xg vs. [ values to the curve:

Xa: S5 B+ CE+ D

Fit a similar curve for the Yy values:

(3) With an arbitrary fractional diffusion constant, cal-
culate Xz and Y5 from Egs. (28) and (29) using X4,
Ys, and Q values from the curve fit of step (2)

(4) Increase the diffusion constant gradually, and

repeat steps (2) and (3)

(5) After the diffusion constant has been increased to
its actual value, iterate steps (2) and (3) until the
change in Xg(L) and Yg(L) between iterations is

less than an allowable error

Define a theoretical X’ (denoted TX"):
TX' = X°(L)(1—F) — YP(L)F
Also, define a curve-fit error (CFE):
CFE = X/ — TX/
Then set
X°(L) = X°(L)(curve fit) + CFE

Y?(L) = Y?(L) (curve fit) + CFE

(33)

(34)

(35)
(36)

The resulting values of X°(L) and Y?(L) satisfy a material balance
exactly. The magnitude of CFE in actual computation averaged

approximately 0.001 mole fraction.

For most cases, this iteration procedure converges rapidly, usu-
ally requiring no more than four or five iterations with the actual
diffusion constant. For those cases where the plug flow Xj vs.
curve is significantly concave downward, the solution diverges.
Results of theoretical calculations show that the difference between
the predicted outlet concentrations for plug flow and for diffusion-



14: 47 25 January 2011

Downl oaded At:

GRADIENT EFFECTS IN SEPARATION CELLS 329

mixing approaches zero as Xg' approaches zero. In addition, if the
diffusion-mixing solution diverges, the plug flow solution gives as
good an agreement with experimental results as was obtained for
cases where the diffusion-mixing solution converged. This might
have been anticipated, since Xg vs. [ curves which are significantly
concave downward have a very small slope for a substantial portion
of the cell length at the outlet end.

APPARATUS AND PROCEDURE

Rectangular barriers of microporous Vycor glass (7H x 23 X
0.053 in.) and Stauffer SS-823-RTV silicone rubber (70 X 4 X 0.031
in.) were used. Metal cells were constructed to support the barriers
and to allow for sampling of the gas stream directly above and
below the barriers at regular intervals. Sampling was done with a
gas-tight syringe and samples were analyzed with a gas chromato-
graph. Six samples of each of the feed stream, the nonpermeated
stream, and the permeated stream were taken and averaged. One
sample was taken from each sample port above and below the
barrier. When sampling the gas stream above and below the barrier,
the needle of the sampling syringe was placed as close to the
barrier surface as possible without damaging the needle or the bar-
rier. However, even with a small sample size (0.5 ml), only an av-
erage of the concentration in the gas space above the barrier could
be obtained. Samples were not taken below the barrier for runs
where the downstream pressure was subatmospheric, as the gas
syringe sampling procedure was not readily adaptable to sub-
atmospheric sampling. The flow rates of the permeated and non-
permeated streams were measured using a soap-bubble flow meter.

RESULTS

A total of 113 experimental separation runs were made. All runs
where the material-balance deviation was greater than 3% were
rejected. This procedure rejected four runs. The Vycor barrier was
used with He-N, and He-CO, gas mixtures and the silicone rubber
barrier with a N,-CO, mixture. The pressure ratio P,/Py was varied
from 0.02 to 0.50, the cut or fraction permeated from 0.05 to 0.95,
and the feed composition from 0.25 to 0.75 mole fraction of B
component.
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FIG. 3. Sample concentration profile, He-N,, Vycor barrier.

Three sample profiles are given in Figs. 3, 4, and 5. The lines
drawn through the points are those predicted by the plug flow
model (solid lines) and the diffusion-mixing model (dashed lines).
A diffusion-mixing prediction is not given in Fig. 5, as the solution
diverged in this case. It can be seen however, that the plug flow
model adequately predicts the outlet concentrations in this case.

For judging the adequacy of the theoretical models, an average
absolute error in concentration prediction (AAE-C), was defined as
follows:

0.801
—
0.701
Xg
or
Y,
8 060t
R / R,x0.10
. F=0.74
© o080
L xf
0483 ~—Plug flow
==Ditfusion mixing
040 1 L 1 ! ]
o} 4 8 12 16 20

Length along barrier {cm)
FIG. 4. Sample concentration profile, He-N,, Vycor barrier.
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0401

0.30

0.20
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0.00
[+]

10 20 30 40 50 60 76
Length aiong barrier (in.)
FIG. 5. Sample concentration profile, N,-CO,, silicone rubber.

[X3(predicted) — (X§(expt.)] x 100

X8(% error) = Xg(expt.) (37)
[Y&(predicted) — Y& (expt.) ] X 100

Y5(% error) = —2 P Y{;(exptl.}) P (38)

AAE-C = 0.5[|X8(% error)| + |Y5 (% error)|] (39)

where: AAE-C = average absolute error in concentration pre-
diction.

Similarly, an error for permeated flow predictions, Eq”, was defined:

_ |[q” (predicted) — g” (expt.)]| X 100
- q” (expt.)

Eq* (40)

The values of AAE-C and E—q” averaged for all the runs are given
in Table 3. Also listed in Table 3 is the percentage of runs for which
a given model predicted an X higher than the experimental Xg, and
a similar value for ¢*. Ideally, this value should be 50%, because if
a model were perfect, one would expect the experimental points to
be high one-half the time. The percentage values in Table 3 show
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TABLE 3

Correlation of Theoretical Models and Experimental Data

Model Average AAE-C  Average Eq” High predictions, %

Concentration predictions

WS I 3.36 16

WS 11 4.31 84

N-B 4.55 88

Plug flow 3.43 81

Diffusion mixing 2.39 67
Permeated flow predictions

WS I 2.83 27

Plug flow 2.38 50

Diffusion mixing 2.27 40

the Naylor-Backer, Weller-Steiner case II, and plug flow predic-
tions to be consistently high, whereas the Weller-Steiner case I
values are usually low. Only the diffusion-mixing model approaches
the ideal 50% value.

The difference in the predicted quantity of permeated flow of the
different models is not nearly as pronounced as in the concentra-
tion predictions, and it is difficult to say whether there is a signifi-
cant difference in the three models tested. However, the diffusion-
mixing and plug flow models do approach more closely the ideal
50% high predictions than the Weller-Steiner case I model.

CONCLUSIONS

Concentration gradients in gas mixture barrier separation cells
were measured, using both microporous and polymeric barriers.
The interpretation of these gradients was performed while consider-
ing the available theoretical models.

Existing theories in the literature were deemed inadequate for
the following reasons:

1. The theories which assume perfect mixing predict a uniform
concentration, i.e., no gradient, on both high- and low-pressure
sides of the cell. The existence of a gradient indicates that the per-
fect mixing assumption is invalid.

2. The theories which supposedly assume no mixing actually
assume that the barrier is far enough away from the low-pressure
flow stream that the gas composition of this stream does not affect
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the composition next to the barrier. Since this will not normally
be the case, this assumption is also invalid.

A two-part theoretical model was developed in this study. In the
first part, plug flow, i.e., unidirectional flow, is assumed. This is
essentially a no-mixing theory which allows for both high- and low-
pressure flow streams to be adjacent to the barrier. In the second
part, diffusional flow caused by the concentration gradient is taken
into account. A straightforward numerical solution to the plug flow
model has been developed. An approximate solution for the model
involving diffusional flow has been proposed. The plug flow equa-
tions are solved and then a correction factor involving diffusion is
added to the plug flow solution. This iterative approximate solution
converges in most cases.

The proposed model represents the experimental data in this
study more adequately than any of the previous models. Given the
feed concentration, feed flow rate, barrier and cell geometry, and
permeability and diffusion coefficients, this model will give pre-
dictions for the concentration gradient on both the high- and low-
pressure sides of the cell. It also yields predictions of both per-
meated and nonpermeated outlet concentrations, and the permeated
flow rate. Where the iterative solution to the diffusion mixing model
does not converge, the model does not adequately predict the con-
centration profile, but it still gives adequate predictions for outlet
conditions.

Nomenclature

AAE-C average absolute error in concentration prediction, %
CFE curve-fit error
d diffusion flow, low-pressure side of barrier
D diffusion flow, high-pressure side of barrier
D diffusion coeflicient
DPA partial pressure difference, A component
DPB  partial pressure difference, B component
E‘_c?’ error in permeate flow prediction, %
F  fraction of feed permeating barrier
h length of incremental element
K constant
l length
L  total length of cell
P pressure
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o
lev]

O

permeated flow of component B in incremental element
flow rate, low-pressure side of barrier

flow rate, high-pressure side of barrier

thickness

“theoretical” X’

width

mole fraction, high-pressure side of barrier

mole fraction, low-pressure side of barrier

X’ dX/dl

x

o 8

X" d2x/dl?

Subscripts:

A component A of mixture

B component B of mixture

D diffusion

H  high-pressure side

L low-pressure side

P permeability
Superscripts:

f  feed stream
o) high-pressure outlet
P low-pressure outlet
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